3.220 \(\int \frac{x^{11}}{\sqrt{a+b x^3+c x^6}} \, dx\)

Optimal. Leaf size=121 \[ \frac{\left (-16 a c+15 b^2-10 b c x^3\right ) \sqrt{a+b x^3+c x^6}}{72 c^3}-\frac{b \left (5 b^2-12 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^3}{2 \sqrt{c} \sqrt{a+b x^3+c x^6}}\right )}{48 c^{7/2}}+\frac{x^6 \sqrt{a+b x^3+c x^6}}{9 c} \]

[Out]

(x^6*Sqrt[a + b*x^3 + c*x^6])/(9*c) + ((15*b^2 - 16*a*c - 10*b*c*x^3)*Sqrt[a + b*x^3 + c*x^6])/(72*c^3) - (b*(
5*b^2 - 12*a*c)*ArcTanh[(b + 2*c*x^3)/(2*Sqrt[c]*Sqrt[a + b*x^3 + c*x^6])])/(48*c^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.105398, antiderivative size = 121, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {1357, 742, 779, 621, 206} \[ \frac{\left (-16 a c+15 b^2-10 b c x^3\right ) \sqrt{a+b x^3+c x^6}}{72 c^3}-\frac{b \left (5 b^2-12 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^3}{2 \sqrt{c} \sqrt{a+b x^3+c x^6}}\right )}{48 c^{7/2}}+\frac{x^6 \sqrt{a+b x^3+c x^6}}{9 c} \]

Antiderivative was successfully verified.

[In]

Int[x^11/Sqrt[a + b*x^3 + c*x^6],x]

[Out]

(x^6*Sqrt[a + b*x^3 + c*x^6])/(9*c) + ((15*b^2 - 16*a*c - 10*b*c*x^3)*Sqrt[a + b*x^3 + c*x^6])/(72*c^3) - (b*(
5*b^2 - 12*a*c)*ArcTanh[(b + 2*c*x^3)/(2*Sqrt[c]*Sqrt[a + b*x^3 + c*x^6])])/(48*c^(7/2))

Rule 1357

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[
b^2 - 4*a*c, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 742

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[1/(c*(m + 2*p + 1)), Int[(d + e*x)^(m - 2)*Simp[c*d^2
*(m + 2*p + 1) - e*(a*e*(m - 1) + b*d*(p + 1)) + e*(2*c*d - b*e)*(m + p)*x, x]*(a + b*x + c*x^2)^p, x], x] /;
FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0]
 && If[RationalQ[m], GtQ[m, 1], SumSimplerQ[m, -2]] && NeQ[m + 2*p + 1, 0] && IntQuadraticQ[a, b, c, d, e, m,
p, x]

Rule 779

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((b
*e*g*(p + 2) - c*(e*f + d*g)*(2*p + 3) - 2*c*e*g*(p + 1)*x)*(a + b*x + c*x^2)^(p + 1))/(2*c^2*(p + 1)*(2*p + 3
)), x] + Dist[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*p + 3))/(2*c^2*(2*p + 3)), Int[(a
+ b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] &&  !LeQ[p, -1]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^{11}}{\sqrt{a+b x^3+c x^6}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{x^3}{\sqrt{a+b x+c x^2}} \, dx,x,x^3\right )\\ &=\frac{x^6 \sqrt{a+b x^3+c x^6}}{9 c}+\frac{\operatorname{Subst}\left (\int \frac{x \left (-2 a-\frac{5 b x}{2}\right )}{\sqrt{a+b x+c x^2}} \, dx,x,x^3\right )}{9 c}\\ &=\frac{x^6 \sqrt{a+b x^3+c x^6}}{9 c}+\frac{\left (15 b^2-16 a c-10 b c x^3\right ) \sqrt{a+b x^3+c x^6}}{72 c^3}-\frac{\left (b \left (5 b^2-12 a c\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx,x,x^3\right )}{48 c^3}\\ &=\frac{x^6 \sqrt{a+b x^3+c x^6}}{9 c}+\frac{\left (15 b^2-16 a c-10 b c x^3\right ) \sqrt{a+b x^3+c x^6}}{72 c^3}-\frac{\left (b \left (5 b^2-12 a c\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x^3}{\sqrt{a+b x^3+c x^6}}\right )}{24 c^3}\\ &=\frac{x^6 \sqrt{a+b x^3+c x^6}}{9 c}+\frac{\left (15 b^2-16 a c-10 b c x^3\right ) \sqrt{a+b x^3+c x^6}}{72 c^3}-\frac{b \left (5 b^2-12 a c\right ) \tanh ^{-1}\left (\frac{b+2 c x^3}{2 \sqrt{c} \sqrt{a+b x^3+c x^6}}\right )}{48 c^{7/2}}\\ \end{align*}

Mathematica [A]  time = 0.053277, size = 104, normalized size = 0.86 \[ \frac{2 \sqrt{c} \sqrt{a+b x^3+c x^6} \left (8 c \left (c x^6-2 a\right )+15 b^2-10 b c x^3\right )+\left (36 a b c-15 b^3\right ) \tanh ^{-1}\left (\frac{b+2 c x^3}{2 \sqrt{c} \sqrt{a+b x^3+c x^6}}\right )}{144 c^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^11/Sqrt[a + b*x^3 + c*x^6],x]

[Out]

(2*Sqrt[c]*Sqrt[a + b*x^3 + c*x^6]*(15*b^2 - 10*b*c*x^3 + 8*c*(-2*a + c*x^6)) + (-15*b^3 + 36*a*b*c)*ArcTanh[(
b + 2*c*x^3)/(2*Sqrt[c]*Sqrt[a + b*x^3 + c*x^6])])/(144*c^(7/2))

________________________________________________________________________________________

Maple [F]  time = 0.02, size = 0, normalized size = 0. \begin{align*} \int{{x}^{11}{\frac{1}{\sqrt{c{x}^{6}+b{x}^{3}+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^11/(c*x^6+b*x^3+a)^(1/2),x)

[Out]

int(x^11/(c*x^6+b*x^3+a)^(1/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(c*x^6+b*x^3+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.58784, size = 568, normalized size = 4.69 \begin{align*} \left [-\frac{3 \,{\left (5 \, b^{3} - 12 \, a b c\right )} \sqrt{c} \log \left (-8 \, c^{2} x^{6} - 8 \, b c x^{3} - b^{2} - 4 \, \sqrt{c x^{6} + b x^{3} + a}{\left (2 \, c x^{3} + b\right )} \sqrt{c} - 4 \, a c\right ) - 4 \,{\left (8 \, c^{3} x^{6} - 10 \, b c^{2} x^{3} + 15 \, b^{2} c - 16 \, a c^{2}\right )} \sqrt{c x^{6} + b x^{3} + a}}{288 \, c^{4}}, \frac{3 \,{\left (5 \, b^{3} - 12 \, a b c\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{c x^{6} + b x^{3} + a}{\left (2 \, c x^{3} + b\right )} \sqrt{-c}}{2 \,{\left (c^{2} x^{6} + b c x^{3} + a c\right )}}\right ) + 2 \,{\left (8 \, c^{3} x^{6} - 10 \, b c^{2} x^{3} + 15 \, b^{2} c - 16 \, a c^{2}\right )} \sqrt{c x^{6} + b x^{3} + a}}{144 \, c^{4}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(c*x^6+b*x^3+a)^(1/2),x, algorithm="fricas")

[Out]

[-1/288*(3*(5*b^3 - 12*a*b*c)*sqrt(c)*log(-8*c^2*x^6 - 8*b*c*x^3 - b^2 - 4*sqrt(c*x^6 + b*x^3 + a)*(2*c*x^3 +
b)*sqrt(c) - 4*a*c) - 4*(8*c^3*x^6 - 10*b*c^2*x^3 + 15*b^2*c - 16*a*c^2)*sqrt(c*x^6 + b*x^3 + a))/c^4, 1/144*(
3*(5*b^3 - 12*a*b*c)*sqrt(-c)*arctan(1/2*sqrt(c*x^6 + b*x^3 + a)*(2*c*x^3 + b)*sqrt(-c)/(c^2*x^6 + b*c*x^3 + a
*c)) + 2*(8*c^3*x^6 - 10*b*c^2*x^3 + 15*b^2*c - 16*a*c^2)*sqrt(c*x^6 + b*x^3 + a))/c^4]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{11}}{\sqrt{a + b x^{3} + c x^{6}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**11/(c*x**6+b*x**3+a)**(1/2),x)

[Out]

Integral(x**11/sqrt(a + b*x**3 + c*x**6), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{11}}{\sqrt{c x^{6} + b x^{3} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(c*x^6+b*x^3+a)^(1/2),x, algorithm="giac")

[Out]

integrate(x^11/sqrt(c*x^6 + b*x^3 + a), x)